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ABSTRACT

The key to high temperature structural composites is the selection and incorporation of
continuous fiber reinforcement with optimum mechanical, physical, and chemical properties.
Critical fiber property needs are high strength, high stiffness, and retention of these properties
during composite fabrication and use. However, unlike polymeric composites where all three
requirements are easily achieved with a variety of commercially available carbon-based fibers,
structural fibers with sufficient stiffness and strength retention for high temperature metal and
ceramic composites are not available. The objective of this paper is to discuss in a general
manner this thermomechanical stability problem for current high performance fibers which are
based on silicon and alumina compositions. This is accomplished by presenting relevant fiber
property data with a brief discussion of potential underlying mechanisms. From this general
overview, some possible materials engineering approaches are suggested which may lead to mini-
mization and/or elimination of this critical stability problem for current high temperature
fibers.

INTRODUCTION

With the performance advantages demonstrated for fiber-reinforced polymeric composites at
ambient and near ambient temperatures, there is currently significant activity in government
and industry aimed at developing metallic and ceramic composites which can extend these
advantages to much higher temperatures. This is especially the case in the aerospace industry
where there is a strong need for structural composites which cannot only provide specific
strength properties better than conventional aluminum, titanium, and nickel-based alloys, but
also operate at higher use temperatures. Prime aerospace applications expected to significantly
benefit from these new materials are hypersonic airframes and advanced propulsion systems,
such as gas turbine engines where composite materials are envisioned for essentially all of the hot
section components. With their higher specific strength and operating temperatures, these metal
matrix composites (MMC) and ceramic matrix composites (CMC) have the potential for not
only reducing system operating costs, but also for improving system performance in terms of
thrust, range, and mission life.

As in the case for low temperature composites, the key to high temperature structural com-
posites is the selection and incorporation of continuous fiber reinforcement with the optimum
mechanical, physical, and chemical properties. Although some of these properties such as fiber
diameter and interfacial bonding depend on whether the matrix is metallic or ceramic (ref. 1), in
general, as with polymeric composites, the critical fiber property needs are high strength, high
stiffness, and retention of these properties during composite fabrication and use. However,
unlike polymeric composites where all three requirements are easily achieved with a variety of
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commercially available carbon-based fibers, structural fibers with sufficient overall performance
for high temperature composites are not available. That is, because of the poor oxidation resis-
tance of carbon-based fibers above 400 °C (ref. 2), high temperature composite engineers have
had to lock to other fiber compositions. Although commercially available, these noncarbon
fibers have been found to be lacking to various degrees in the key need of structural property
retention, i.e., thermomechanical stability. Clearly, if fiber producers are to improve their
products and high temperature structural composites are to achieve their potential, the under-
lying mechanisms for these instabilities must be understood. With this in mind, the objective of
this paper is to discuss in a general manner the status for the thermomechanical instability
problem in current high temperature structural fibers and, based on this discussion, to suggest
some approaches that might be attempted to address this critical issue.

COMPOSITIONS FOR HIGH TEMPERATURE STRUCTURAL FIBERS

To put the current situation for high temperature fibers into perspective, it is important
first to discuss three important factors that strongly influence the composite engineer’s choice for
fiber chemical composition. These factors, which are related to maintaining fiber strength
within the composite environment, are (1) thermal stability, (2) service gas durability, and
(3) matrix compatibility. That is, the engineer typically selects fiber compositions which during
composite processing and use (1) have the potential for intrinsic physical and chemical stability,
(2) do not significantly react with any expected environmental gas, and (3) are chemically and
physically compatible with the anticipated matrix composition.

Because high temperature composites are generally fabricated at temperatures well above
their anticipated use temperatures and because oxygen is the most aggressive service gas for
most high temperature applications of practical interest, composite engineers and fiber producers
have satisfied the first two needs by considering only fiber compositions that remain solid to
above 2000 °C and are oxidation-resistant at composite service temperatures. Generally,
oxidation-resistance implies compositions which react little with oxygen or in interaction with
oxygen form a protective diffusion barrier oxide. Based on these criteria, compositional fiber
choices can be currently narrowed down to two generic classes of ceramic fibers: silicon-based
nonoxides and alumina-based oxides. In the presence of air environments, the Si-based composi-
tions, such as 5iC, form protective SiO, coatings which significantly inhibit oxygen diffusion to
the fiber surface (ref. 2). Alumina, on the other hand, is not only stable in oxygen but also
displays one of the best thermomechanical stabilities of all well-studied oxide compositions
(refs. 3 and 4). Other property advantages for both compositions are low densities and high
elastic moduli.

Based on the needs for thermal stability and oxidation resistance, essentially all current
commercial fibers developed for high temperature application possess either Si-based or Al,O5-
based compositions. These commercial fibers are summarized in table I together with some of
their important properties. For convenience, the fibers are divided into six generic types based
on primary composition and method of fabrication since these two factors typically result in
fibers with similar mechanical, physical, and chemical properties. Also indicated in table I are
approximate current cost per kilogram and typical trade names.

Matrix compatibility, the third factor influencing fiber composition selection, has both
physical and chemical aspects. On the physical side, it is critical that the fiber composition have
a coefficient of thermal expansion (CTE) very nearly equal to that of the matrix. Without this



condition, internal residual stresses can develop in composites which, during thermal cycling, can
severely degrade the fiber, matrix, or fiber/matrix interface. To avoid this problem for CMC,
the fiber and matrix are often chosen to possess the same composition, e.g., SiC/SiC. For
MMC, however, achieving an expansion match with the table I fibers is generally not possible
because most metal matrices of high technical interest have CTE’s greater than 10x10% °C1L.
This MMC problem has led to research for the identification and development of new fiber com-
positions with high CTE and to the implementation of such concepts-as compliant fiber coatings
which, by virtue of their plasticity, can serve to reduce high internal stresses at fiber-matrix
interfaces (ref. 5).

Another important aspect of the matrix compatibility factor is the attainment of proper
interfacial interaction between fiber and matrix so that sufficient mechanical load transfer is
achieved. For MMC in which strong interfacial interaction is desirable (ref. 1), fiber and matrix
compositions are often chosen which allow some chemical reaction between fiber and matrix at
the temperatures needed for matrix consolidation. Care must be taken, however, that at the
lower temperatures associated with composite use, this chemical reaction proceeds at a rate
which does not severely degrade fiber strength. For CMC in which weak interfacial bonding is
desirable (ref. 1), fiber and matrix compositions are often selected based on the avoidance of
chemical reaction during composite processing or use. Weak bonding can then be achieved by
mechanical interlocking due to fiber surface roughness or by friction between fiber and matrix.
For those MMC and CMC cases where the above interaction approaches are not effective, fiber
coatings can sometimes be used. It should be realized, however, that many of the same issues
associated with thermal stability, oxidation resistance, thermal expansion compatibility, and
chemical compatibility will also apply to the coating composition.

MECHANISMS AFFECTING FIBER STRENGTH RETENTION

For high temperature application, perhaps the most important properties to be examined
for the table I fibers are as-produced tensile strength and thermomechanical stability as revealed
by their ability to retain strength under composite processing and use conditions. Since the
fibers are brittle ceramics, as-produced tensile strengths are controlled by surface and volume
flaws introduced during fiber processing; whereas strength retention is affected by the creation of
larger flaws either during fiber exposure or during fiber loading at high temperature.

For the six fiber types of table I, the above mechanisms are revealed in the tensile strength
versus temperature results shown in figures 1 and 2. For figure 1, the strength results were
obtained at room temperature after typically aging the fiber for short time periods (1 to 10 hr)
in inert environments for the nonoxide fibers and in air for the oxide fibers; whereas for figure 2,
the strength results were typically obtained at the test temperature after a short (~10 min) soak
time in air. Common practice is to measure tensile strength on individual fibers of 25 mm gauge
length at a strain rate of approximately 5x10° sec’l. Because of the statistical nature of
ceramic fiber failure, it should be expected that in their as-produced condition and after high
temperature treatment, the fiber types of table I will display a large scatter in strength data.
For this reason, it is convenient to group the figures 1 and 2 results into approximate bands of
observed behavior. More detailed information on as-produced strength and strength retention
behavior can be found in the table I references and in the literature (ref. 24).

Examining first the Si-based fiber data of figure 1, it can be seen that the large diameter
SiC monofilament fibers produced by chemical vapor deposition (CVD) show significant strength



loss after short time thermal treatments between 1200 and 1500 °C. Current theory for the
strength degradation mechanism centers on flaw growth by reaction of SiC with metallic sub-
strates (e.g., tungsten) (ref. 6) or by reaction of free silicon metal in the CVD SiC with carbon-
rich substrates and surface coatings (ref. 7). For the small diameter Si-based fibers produced by
polymer pyrolysis, process-generated oxide phases within the fiber can react with base nonoxide
phases at temperatures as low as 1000 °C, resulting in such large internal flaws that these fibers
have effectively no strength above 1500 °C (ref. 8). For the Al,O;-based fibers of figure 1, the
large diameter single crystal monofilament grown by the edge-defined film growth (EDFQG)
method (ref. 9) appears to be best for retaining strength to above 1400 °C. The mechanism for
the slow strength loss with temperature is not certain but may be related to thermal effects on
dislocation densities. Finally, for the small diameter polycrystalline Al,O;-based fibers produced
by sol gel (SG) or slurry spinning (SS), the strength degradation beginning near 1200 °C
appears to be related to the growth of strength-limiting grains (ref. 10).

From a practical point of view, the figure 1 results can be summarized by the conclusion
that no current commercial fiber can maintain its as-produced strength for short time exposures
above 1200 °C. This suggests that if these materials are to be used as reinforcement, MMC and
CMC consolidation temperatures should be kept below 1200 °C in order to avoid strength
degradation due to internal fiber mechanisms. Obviously, the situation can become even worse
if fiber-matrix chemical reaction also occurred during composite fabrication.

To understand the upper use temperature for these MMC and CMC as structural materials,
one can examine the data of figure 2 which plots strength at temperature for the six fiber types.
It can be seen that under tensile loads, strength degradation begins as low as 800 °C for all
types. Indeed, these data were obtained in fast fracture tests, suggesting that under long term
structural use, the upper use temperature needed to maintain the as-produced fiber strength
would be less than 800 °C. For the polycrystalline fibers, it would appear that the underlying
mechanisms for the figure 2 data are creep related. That is, all fiber types begin to show creep
at the threshold temperatures for strength degradation, which suggests creep-induced flaw
growth as the controlling mechanism. Creep in the polycrystalline fibers occurs by grain
boundary sliding which is enhanced by small grain sizes and low viscosity grain boundary
phases, such as, free silicon in the SiC (CVD) fibers and SiO, in the Si-based (PP) fibers
(ref. 11). For the single crystal AlLO, (EDFG) fiber, the dislocation mobility increases
significantly above 800 °C, suggesting that the figure 2 data is caused by a drop in yield
strength of this material with increasing temperatures.

An additional undesirable aspect of fiber creep is that it results in internal and external
dimensional changes in a structural composite which can seriously limit use temperatures and
service life. In figure 3, estimates are presented on the upper use temperatures for the most
creep-resistant SiC-based and Al,O;-based fibers currently produced commercially (refs. 11
and 3). For these estimates, an upper creep strain limit of 1 percent was assumed for a service
stress of 100 MPa and service life of 300 hr. For the current polycrystalline fibers, the SiC-based
and Al,0,-based fibers can reach ~1200 and 1000 °C, respectively; whereas for the current
single crystal fibers, the limits are increased to ~1900 and 1600 °C, respectively. It should be
noted that today no continuous single crystal SiC based fiber exists so that the figure 3 estimate
is based on bulk material data. It should also be realized that the upper creep-limited tempera-
ture estimates can decrease significantly for smaller creep strain limits, higher service stresses, or
longer service lives.



APPROACHES FOR STABILITY IMPROVEMENT

Based on the previous discussion, it should be clear that current Si-based and Al,O,-based
fibers, which can withstand oxidation environments to temperatures well above 1000 °C, cannot
be used at this temperature for any length of time in structural composites. The primary limit-
ing mechanisms are impurity-induced internal reactions and creep-induced flaw growth. To
make improvements in these fibers, obviously the fiber producers must eliminate or minimize the
limiting mechanisms for each type. For example, removing metallic substrates and free silicon in
the SiC (CVD) fibers is required. Eliminating oxide phases and metallic inclusions for the Si-
based (PP) fibers and free SiO, in the Al,O;-based (SG, SS) fibers is also needed. But perhaps,
more importantly, there is a need to minimize creep as much as possible.

Since grain boundary sliding is the primary creep mechanism in polycrystalline fibers, one
approach to reduce fiber creep is to increase grain size (ref. 11). However, grain size should be
kept below ~1 um if fiber strengths greater than ~1 GPa are desired. For current Si-based
fibers, grain sizes are typically below 0.1 pm, so that opportunities appear to exist here for creep
improvement. A second approach which may be more effective is the elimination of low vis-
cosity grain boundary phases, such as, free Si and SiO,, and the insertion of stable grain bound-
ary pinners, such as, carbon for Si-based fibers. These grain boundary pinners can also aid in
inhibiting grain growth. A third approach might be to utilize large aspect ratio grains with the
small dimension transverse to the fiber axis for good tensile strength and the large dimension
along the fiber axis for good high temperature stability (ref. 12).

For single crystal fibers, creep is caused by dislocation motion. One approach for creep
reduction would then be to add stable dislocation pinning phases to the ceramic fiber as is often
done in precipitate and solution-strengthened metal alloys. Another approach might be to select
a fiber crystal structure in which dislocation mobility is intrinsically inhibited. A third approach
for oxide fibers might be to develop a fine-sized diameter fiber or a fine-sized single crystal eutec-
tic structure aligned along the fiber axis so that dislocation mobility would be hindered by the
phase boundaries.

The microstructural approaches discussed above for stability improvement of current fibers
are summarized in table II. Using bulk ceramic behavior as an example of the effectiveness of
these approaches, one can make crude estimates of the improvements in creep resistance to be
expected. These are displayed as upper use temperatures in figure 3 for the bars labeled opti-
mized polycrystalline and single crystal. From these estimates, one might conclude that the
Si-based and Al,O;-based fiber producers can possibly increase temperature capability by as
much as 400 and 200 °C, respectively, over current fibers. Figure 3 also suggests that if strong
continuous single crystal fibers can be fabricated, they would offer the highest use temperatures.
For the Si-based compositions, although SiC and SigN, whiskers are commercially available, no
known source exists for continuous single crystals. The reasons for this probably center on the
need for controlled atmosphere growth facilities and, as with current continuous single crystal
Al O, fiber, the unfavorable economics associated with significantly slow growth kinetics.

CONCLUDING REMARKS

The objective of this paper was to indicate that in the area of high temperature structural
fibers, there exists a significant deficiency in the thermomechanical performance of current com-
mercial fibers. The opportunity thus exists for fiber producers to develop new fibers which can



seriously impact the potent area of high temperature composites. By understanding the intrinsic
microstructural mechanisms underlying the instability problem for each fiber type, approaches
such as those suggested here might be attempted to develop improved behavior. Although pro-
cessing methods were not discussed, one hopes that current techniques and facilities could be
used so as to reduce costs and to achieve new fibers as soon as possible. However, if this were
not the case, it would seem that the potentially high technical and economic payoff predicted for
high temperature structural fibers and composites would be sufficient to spur research and
development.
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Room temperature tensile strength, GPa

TABLE II.—OPPORTUNITIES FOR NEW FIBERS WITH
IMPROVED THERMOMECHANICAL STABILITY

Polycrystalline fibers

- Tailor grain size

Single crystal fibers

* Reduce dislocation mobility
- Add stable pinning phases
- Select low mobility crystal structure
- Develop fine-sized diameter
- Develop fine-sized aligned eutectic

* Eliminate reactive phases in Si-based fibers
* Reduce grain boundary mobility
- Eliminate low viscosity phases

- Add stable pinning phases
- Align high aspect ratio grains

* Develop cost-effective processing for continuous Si-based fibers
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Figure 1.—Strength retention of current high temperature
structural fibers. Typical thermal treatment times range
from one to ten hours.
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Figure 2. —Temperature—dependent strenght of current
high temperature structural fibers. times at the test
temperature are typically less than 15 min.
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Figure 3.—Estimated creep-limited use temperatures of surrent fibers and new
fibers with optimized microstructures. Estimates assume 1% creep stain in 30
hours at 0.1 GPa stress.
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